ICE CORE DRILLING. Edited by John F.
Splettstoesser. Lincoln, Nebraska: University
of Nebraska Press, 1976. 11 x 8 1/2 inches,
soft cover, 200 pages, illustrated. $7.95.

There are, of course, many good reasons
for wanting to obtain ice cores from glaciers,
but with the recent upsurge of interest in
climatic change studies, and the discovery
that deep ice cores can yield information
about ancient climatic changes, this publica-
tion is indeed a timely one. It essentially
contains papers presented at a symposium on
ice core drilling held in Lincoln, Nebraska
on August 28-30, 1974. Only two of the sixteen
papers and one abstract have been published
elsewhere, and another paper (not presented
at the symposium) was included because of
its direct relevance to the subject.

A wide variety of drill types (designed for
different ice depths and temperatures) are
described in the volume, so that the practis-
ing field glaciologist is able to obtain a good
review of the state of the art, at least up to
1974. The order of the papers (alphabetical
by first author) is rather distracting. For in-
fstance, a centrally located paper by M.
Mellor and P. V. Sellman, General Consider-
ations for Drill System Design, should
logically be the first paper, and an adjacent
paper by C. C. Langway, Jr., The Polar Ice
Core Storage Facility at USA CRREL, last,
with the remainder of the technical papers
grouped in some order between them. How-
ever, these cosmetic effects may be overlook-
ed as the volume was printed "in the interests
of timeliness and economy . . ." and the
alphabetical ordering of articles may just be
one reflection of these facts.

Three of the articles do not actually deal
with coring. K. Philberth's paper, The Ther-
mal Probe Deep Drilling Method by EGIG
in 1968 at Station Jarl Jøset, Central Green-
land, describes the very ingenious, but now
well-known, remote probe which is, itself,
non-retrievable. The abstract by A. Higashi
and H. Shoji, Mechanical Properties of Ant-
artic Deep Core Ice, contains information
which might be useful for future deep coring
operations, as well as theoretical studies. The
paper by W. D. Harrison and B. Kamb,
Drilling to Observe Subglacial Conditions and
Sliding Motion, provides a discussion of cur-
rent methods for penetrating debris-laden ice
to the bed of the glacier in order to observe
or monitor the processes taking place there.
Each of these papers is interesting in its own
right and may have peripheral relevance to
some future ice core drilling.

The international nature of the participa-
tion in ice core drilling operations is shown
by the authorship of the above, and by the
remaining papers. I. G. Bird expounds on
Thermal Ice Drilling: Australian Develop-
ments and Experience in the Antarctic;
F. Gillet, D. Donnou and G. Ricou of France
describe A New Electrothermal Drill for
Coring in Ice; B. Lyle Hansen of the United
States gives a prospectus on Deep Core
Drilling in the East Antarctic Ice Sheet;
Roger leB. Hooke describes two versions of
the University of Minnesota Ice Drill;
S. J. Johnsen of Denmark describes shallow
snow sampling devices developed for stable
isotope studies in Near-surface Snow Sam-
ping Devices; Ye. S. Korotkevich and B. B.
Kudryashov of the U.S.S.R., expound on
Thermal Ice Drilling: Australian Develop-
sions, using electro-thermal and electro-
mechanical core drills; W. S. B. Paterson of
Canada describes in Thermal Core Drilling
in Ice Caps in Arctic Canada the programme
carried out by the Polar Continental Shelf
Project on Devon Island; J. H. Rand of the
United States Army Cold Regions Research
and Engineering Laboratory (CRREL) gives
some details of the new USA CRREL Shal-
low (100-metre electro-mechanical core)
Drill; Heinrich Rufli, Bernhard Stauffer and
Hans Oeschger of Switzerland, in their paper
Lightweight 50-Meter Core Drill for Firn
and Ice, present details of a similar drill,
which now (in 1976) has been modified and
tested to handle holes up to 100 metres in
depth. This latter type of drill is in great
demand and at least one other country
(Denmark) has built and operated a similar
device. Yusio Suzuki of Japan gives details
of Deep Core Drilling by Japanese Antarctic
Expeditions using thermal and electro drills
(the latter is the same as the electro-mechani-
cal drill). Philip L. Hodge of the United
States expounds on Solid Nose and Coring
Thermal Drills for Temperate Ice, and Pall
Theodorsson covers Thermal and Mechanical
Drilling in Temperate Ice in Icelandic Glac-
iers. In most cases, adequate details of the
 drilled design are presented in very generali-
zations on drawings.

The volume is attractively presented in
large format, enabling handy insertion of
supporting material, and there is sufficient
space on most pages on which to make addi-
tional notes updating articles, or for provid-
ing dimensions on drawings that are missing.

It is a very welcome addition to the field
glacologist's bookshelf and, because of rapid
developments in ice drill technology, it is
likely to be followed closely by others of
it kind.

G. Holdsworth