Dorset Palaeoeskimo Skin Processing at Phillip’s Garden, Port au Choix, Northwestern Newfoundland

M.A.P. RENOUF\(^1\) and T. BELL\(^2\)

(Received 3 April 2007; accepted in revised form 27 June 2007)

ABSTRACT. This paper examines archeological and palaeolimnological evidence of sealskin processing associated with Phillip’s Garden, a Dorset Palaeoeskimo site at Port au Choix in northwestern Newfoundland. We propose that harp seals were hunted from Phillip’s Garden as much for skins as for meat and fat, and that processing skins was the first step in the important activity of making clothes, boots, and other items. We outline the steps and tools involved in sealskin processing throughout the northern circumpolar world, and we identify specialized skin-processing tools in the Phillip’s Garden tool assemblage. Sealskin processing is also inferred from pollen and chironomid data from Bass Pond, adjacent to Phillip’s Garden. Disturbance across pollen taxa is evident at 2200 – 1400 cal BP, and anomalous salinity values are evident at 2000 – 1400 cal BP. We argue that these are connected to Palaeoeskimo activities at the pond, in particular Dorset seal skin soaking and tanning. This study shifts our perception of Dorset activities at Phillip’s Garden away from a narrow focus on seal hunting and the site itself and broadens our view to include more of the multiplicity of day-to-day human activities that took place within a larger cultural landscape that included Phillip’s Garden and Bass Pond.

Key words: Newfoundland, Dorset Palaeoeskimo, Phillip’s Garden, sealskin processing, tabular slate tools, palaeolimnology, cultural landscape

INTRODUCTION

Phillip’s Garden (EeBi-1) is the largest and most intensively occupied Dorset Palaeoeskimo site identified in Newfoundland (Fig. 1). It comprises a 2 ha meadow ringed by stunted spruce and fir forest, locally called tuckamore, beyond which are peat barrens (Fig. 2). The meadow consists of three main raised terraces; the upper two terraces at 6 – 11 m above sea level are covered by a 20 – 50 cm cultural deposit and have shallow oval or rectangular depressions, which are the central areas of substantial dwellings. Sixty-seven of these structures have been identified to date, and it is certain that others have been filled in with post-occupational midden debris, while still others lie within the edge of the advancing tuckamore. The site was occupied for approximately eight centuries. Thirty-five charcoal-based radiocarbon dates range from 1990 to 1180 cal BP; all dates in this paper are expressed in calibrated calendar years before present (cal BP) at the one-sigma probability range.
four middens have been excavated or tested by Harp (1964, 1976) and Renouf (1993, 1999, 2002, 2006). On the basis of a per-decade tally of the number of dwellings whose calibrated calendar ages overlap at the one-sigma probability range, site occupation has been divided into three chronological phases that represent an initial low population, followed by a population maximum and a subsequent population decline. The phases are dated at 1990 – 1550 cal BP, 1550 – 1350 cal BP and 1350 – 1180 cal BP (Renouf, 2006:122).

Faunal material demonstrates that harp seal hunting was the subsistence basis for the site. The faunal assemblages are predominantly Phocidae, and of those elements that are identifiable to species, over 90% are Phoca groenlandica, or harp seal (Murray, 1992; Renouf and Murray, 1999; Hodgetts et al., 2003). We therefore assume that most Phocidae bones unidentifiable to species are in fact harp seal. Modern harp seal herds are known to migrate south past the area in December en route to their breeding grounds in the Gulf of St. Lawrence, returning north in April–May (Sergeant, 1992). In December, seals are in open water, whereas in April–May they are associated with the retreating sea ice edge. In the latter period, they occur in an ice lead that regularly opens up not far offshore from Phillip’s Garden (LeBlanc, 1996). While April–May exploitation by Dorset is interpreted from the presence of newborn seals (Renouf, 1993), Hodgetts (2005a, b) demonstrated a December exploitation of seals on the basis of the population age profile inferred from femur shaft measurement data. We think that April–May was more likely the main period of harp seal hunting because of the predictability and spatial concentration of seals associated with the ice edge at that time. Hodgetts et al. (2003:113) document changing seal proportions over time. Faunal collections dating from 1930 to 1230 cal BP show that after 1420 cal BP, there was a decrease in reliance on seal (80–70% of the total identified bones) and a commensurate increase in the proportion of fish and birds (20–30%). While this change over time has implications for understanding the eventual abandonment of the site (Renouf and Bell, in press), it shows the sustained importance of seal hunting over the eight centuries of its occupation.

The predictable concentration of harp seals was the basis for a concentration of families at Phillip’s Garden. Although we do not know how many of the dwellings were contemporaneous, recent excavations of middle phase dwellings have shown them to be sufficiently large and well constructed to house multiple families over the long term (Renouf, 2006). This suggests that Phillip’s Garden was a population aggregation site of the sort common to hunting and gathering people worldwide (Turnbull, 1968; Lee, 1972; Mauss, 1979). Binford (2001:251) summarized the population size at regional aggregation sites of 15 Arctic hunter-gatherer societies, which ranged from 64 to 350 people, with an average of 138. Given the size and longevity of the dwellings at Phillip’s Garden, it is likely that the number of people who gathered for the April–May harp seal hunt was at the higher end of this range.

Seal hunting is reflected in the Phillip’s Garden artifact collection. Of the 31067 artifacts, 9.9% are harpoon end-blades. Sealskin processing is an activity complementary to
In this paper, we argue that tabular slate artifacts, which comprise 4.4% of the collection (Table 1), are specialized sealskin-processing tools. We also argue that changes at 2200 –1400 BP in fossil pollen and chironomid assemblages from nearby Bass Pond indicate sealskin depilation and tanning at the pond.

ETHNOGRAPHIC CONTEXT

In Arctic and Subarctic hunter-gatherer societies, good clothing was essential. Both sealskin and caribou skin were required because of their complementary properties (Oakes and Riewe, 1998). Caribou hair has an open cellular structure that traps air, providing warmth and humidity control; however, it is not waterproof. Seal hair has a more closed cellular structure, so it is not as warm, but the hair has an outer surface of fine overlapping scales that repel water (Meeks and Cartwright, 2005). Thus caribou skin clothing is suited to colder, drier conditions, and sealskin clothing is suited to warmer and wetter weather and is ideal for boots (Bogoras, 1909; Balikci, 1970; Oakes, 1987; Oakes and Riewe, 1998; Meeks and Cartwright, 2005).

Sealskin is thicker and tougher than caribou and is better for tent and kayak covers (Oakes, 1987; Issenman, 1997).

To be made into clothing or other articles, sealskin requires processing that makes it soft and pliable. The following description of the general steps is derived from historical and modern ethnographic literature of northern circumpolar peoples (Boas, 1888; Mason, 1892; Turner, 1894; Nelson, 1899; Jochelson, 1908; Bogoras, 1909; Birket-Smith, 1929, 1945; Jenness, 1946; Holtved, 1967; Iglooliorde, 1986; Oakes, 1987; Bock, 1991; Firestone, 1992, 1994; Hall et al., 1994; Thompson, 1994; Issenman, 1997; Oakes and Riewe, 1998; King et al., 2005).

After meat removal, the sealskin had to be cleaned, degreased, stretched, and softened. Further optional steps were depilation and tanning (Issenman, 1997; Oakes, 1987). Oakes (1987:8 – 10) lists the necessary tools as an **ulu**, a knife sharpener, a straight-edged scraper, a convex-edged scraper, and a scraping platform, commonly a board (Holtved, 1967:126). In the past, scapula and long-bone scrapers were used, and ground slate blades of **uluit** and scrapers were set into bone or wooden handles (Oakes, 1987; Lemoine, 1997). While bone scrapers are still in use today, **ulu** and scraper blades today are exclusively metal (Otak, 2005).

Table 1. Artifacts from Phillip’s Garden database as of 31 December 2006. Counts will change as excavations and collection analyses continue. Radiocarbon dates were calibrated using Calib 5.0 (Stuiver and Reimer, 1993) and dates are from Harp (1976) and the Port au Choix Archaeology Project, including Hodgetts (2002). Dwellings that Harp excavated are given a house number; dwellings that Renouf excavated are given a feature number.

<table>
<thead>
<tr>
<th>Ranges of C(^{14}) Dates Calibrated to cal BP at 1σ Probability</th>
<th>Harpoon Endblades</th>
<th>Tabular Slate Tools</th>
<th>Total No. of Tools(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bevelled-Edged</td>
<td>Rounded-Tip</td>
<td>Fragments</td>
</tr>
<tr>
<td>House 1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>House 2</td>
<td>1710–1340</td>
<td>451</td>
<td>47</td>
</tr>
<tr>
<td>House 3</td>
<td>undated</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>House 4</td>
<td>1520–1410</td>
<td>268</td>
<td>33</td>
</tr>
<tr>
<td>House 5</td>
<td>1480–1320</td>
<td>26</td>
<td>9</td>
</tr>
<tr>
<td>House 6</td>
<td>1600–1420</td>
<td>227</td>
<td>22</td>
</tr>
<tr>
<td>House 7</td>
<td>undated</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>House 8</td>
<td>undated</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>House 9</td>
<td>undated</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>House 10</td>
<td>1690–1420</td>
<td>204</td>
<td>41</td>
</tr>
<tr>
<td>House 11</td>
<td>1510–1340</td>
<td>301</td>
<td>8</td>
</tr>
<tr>
<td>House 12</td>
<td>1520–1370</td>
<td>173</td>
<td>16</td>
</tr>
<tr>
<td>House 13</td>
<td>undated</td>
<td>67</td>
<td>8</td>
</tr>
<tr>
<td>House 14</td>
<td>undated</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>House 15</td>
<td>undated</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>House 16</td>
<td>1520–1410</td>
<td>46</td>
<td>7</td>
</tr>
<tr>
<td>House 17</td>
<td>1390–1310</td>
<td>365</td>
<td>42</td>
</tr>
<tr>
<td>House 18</td>
<td>1690–1410</td>
<td>356</td>
<td>28</td>
</tr>
<tr>
<td>House 19</td>
<td>undated</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>House 20</td>
<td>1300–1180</td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td>House Feature 1</td>
<td>1920–1630</td>
<td>61</td>
<td>8</td>
</tr>
<tr>
<td>House Feature 1/14(^1)</td>
<td>n/a</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>House Feature 14</td>
<td>1990–1870</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>House Feature 55</td>
<td>1410–1180</td>
<td>53</td>
<td>4</td>
</tr>
<tr>
<td>Midden Feature 2</td>
<td>1950–1340</td>
<td>132</td>
<td>18</td>
</tr>
<tr>
<td>Midden Feature 42</td>
<td>undated</td>
<td>35</td>
<td>0</td>
</tr>
<tr>
<td>Midden Feature 49</td>
<td>1930–1720</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Unknown provenience</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>3061</td>
<td>304</td>
<td>98</td>
</tr>
</tbody>
</table>

1 From excavation units that could pertain to either house feature.

2 Total numbers of tools exclude debitage, retouched flakes, and utilized flakes.
After the seal was flensed, the fat, meat, and connective tissue were removed with a sharp *ulu*. Oakes (1987) and Rankin and Labrèche (1991:110) describe the edge as unifacial. However, the *ulu* was multi-purpose, and in other contexts had a bifacial edge (Rankin and Labrèche, 1991; Frink et al., 2003). Long bone and scapula scrapers were commonly used at this stage of the process (Boas, 1888; Birket-Smith, 1929, 1945; Lemoine, 1997). The skin was laid on the woman’s thigh or scraping board, and the scraping movements were made away from the body with the bevel of the *ulu* against the flesh side of the sealskin (Oakes, 1987; Issenman, 1997). Next the skin was scraped with a blunt scraper to press out oil and remove any remaining meat and connective tissue. It was then washed in fresh water, sometimes with the addition of soap, and was pegged out on the ground or lashed to a frame to dry. After drying, the skin was removed from the frame or pegs, rolled up hair side out, and set aside for later processing.

When it was time to prepare the skin, it was unrolled, remoistened, and once again pegged out or lashed to a frame. The flesh side of the skin was scraped with a blunt scraper to break up the connective tissue, thereby stretching and softening the skin. Birket-Smith (1929:242) specifies that a straight scraper was used at this stage. The scraped skin was left to dry, after which it was re-moistened and re-scraped; there were several cycles of moistening, scraping, and drying. Commonly the skin was further softened by taking it off the frame or pegs and repeatedly chewing it, wringing it, and stamping on it (Birket-Smith, 1945; Hall et al., 1994). When the skin was sufficiently soft, it was sometimes finished by a final scrape with a sharp scraper or *ulu* to remove a thin layer of tissue, giving a smooth surface texture (Oakes and Riewe, 1998).

If the sealskin was to be depilated, for use in boot soles, summer waterproof boots, kayak covers or tent covers, the hair was often shaved with a sharp *ulu* (Turner, 1894; Issenman, 1997). Alternatively, the hair was loosened through putrefaction and then removed with a blunt scraper (Turner, 1894; Nelson, 1899). In this case, a damp skin was rolled, hair side in, sometimes together with a putrefying substance such as fish offal, and left overnight to loosen the hair. Similarly, depilation could be hastened by immersing the skin in hot water (Nelson, 1899; Oakes, 1987; Issenman, 1997) or soaking it in cold water (Bogoras, 1909; Oakes and Riewe, 1998), until the hair began to slip from the follicles and could be more easily scraped off. Hall et al. (1994:22) mention soaking skins in a small pond, where the relatively warm water helped remove the hair, and Boas (1888:112) mentions soaking skins in brooks for the same purpose.

Depilated sealskins were tanned to preserve and waterproof them and to add colour. The tanning solution was commonly a bark-steeped weak brine. A variety of red, black, yellow, orange and brown shades could be produced, depending on which bark or combination of barks was used (Jochelson, 1908; Bogoras, 1909; Oakes and Riewe, 1998). A favourite was the reddish-brown colour produced by alder (Jochelson, 1908). The scraped and softened sealskin was immersed in the tanning solution for hours or days until it reached the desired colour, after which it was removed and dried.

A similar process is still used by residents of the Northern Peninsula of Newfoundland. They have been making sealskin boots for at least 100 years (Bock, 1991; Great Northern Peninsula Craft Producers, 2002), a practice thought to derive from the Labrador Inuit (Firestone, 1992, 1994). Leather boots were preferred over fur boots because less snow adhered to them (Firestone, 1992). While amongst most circumpolar indigenous groups sealskin scraping was done by women, on the Northern Peninsula it is a man’s task. As described by Bock (1991) and the Great Northern Peninsula Craft Producers (2002), seals are hunted in the spring and flensed. The meat and fat are scraped from the sealskin with the sharp blade of a curved knife. The skins are then sprinkled with salt as a preservative and rolled up until the weather gets warmer and the next processing stages can begin. In early summer, the skins are taken out, rinsed, trimmed, and laced into a frame. They are rubbed with sawdust to absorb grease, after which they undergo a process of repetitive scrapings on the flesh side with a blunt iron scraper; the working edge is at a right angle to the skin surface. This stretches and softens the skin and squeezes out the remaining oils in preparation for even absorption of the tanning solution. The frames are placed in the sun to dry for about two weeks and are scraped twice daily. The framed skins are then immersed in a small, shallow, freshwater pond that has warmed up sufficiently to promote bacterial action (Fig. 3). Rocks are placed on the skins to submerge them evenly. The skins are soaked for three to four weeks, during which time bacteria remove or loosen the hair. When the skins are taken out of the pond, they are scraped several times to completely remove the loosened hair. Then they are unlaced from the frames, scraped again, and set aside for tanning.

The tanning solution is a weak brine in which bark had been steeped; the ratio of salt to water is 1:100 by volume, and its purpose is to fix the colour. The bark of fir (which produces yellow) and birch (which produces dark red) are used in combination to give the desired hue. The bark is soaked in the solution for two to eight weeks and removed. Then the sealskins are added to the tanning solution and soaked for seven to ten days. When a skin is removed from the tanning solution, it is laced back into the frame for a day to dry, after which it is removed and ready to be made into boots.

To summarize, skin processing required two essential kinds of tools: cutters and scrapers. The cutting tool (usually an *ulu*) had a sharp blade for the initial removal of meat, fat, and fibre and also for a final finish if desired; it could be used in skin depilation. Scrapers were both straight-edged and convex-edged and were used to stretch and soften the skin and press out grease. Skin depilation, if required, could be achieved in three ways: (1) shaving
with the sharp ulu, (2) scraping with a blunt scraper after the hair was loosened through putrefaction or soaking in hot or cold water, or (3) prolonged soaking in a small, shallow pond to let bacterial action remove or loosen the hair. Depilated skins were tanned using a saltwater solution in which bark had been steeped, with coloration and hue controlled through the combination of tree species used and the duration of immersion.

SEALSKIN PROCESSING AT PHILLIP’S GARDEN

The 31067 lithic and organic artifacts from Phillip’s Garden come from 13 fully excavated and 11 partially excavated dwellings and a number of large and small midden deposits. A total of 1370 tabular slate tools are included in the Phillip’s Garden artifact collection (Table 1); the slate source is unknown. Two subcategories are identified: (1) bevelled-edge (Fig. 4) and (2) rounded-tip (Fig. 5). There is a wide range of variation in size and shape within each subcategory, and there are preforms of both. Many specimens cannot be identified beyond “tabular slate tool fragment” (n = 968) (Fig. 6). This identification is made on the basis of the presence of at least one of the following criteria: (1) one or two flat surfaces; (2) characteristic surface grooves or striations, or both; (3) the presence of one or more holes; and (4) at least one edge that is unifacially bevelled, rounded, blunted, bifacially bevelled and blunted with a third facet, or has a narrow longitudinal ridge. Therefore, although these fragments cannot be identified as bevelled edge or rounded-tip, they can be recognized as tabular slate tools and are included in the total. The only other slate tools present in the Phillip’s Garden collection are slate points, of which there are 18. While it is possible that some of the smaller ground slate fragments have been misidentified as tabular and are in fact fragments of slate points, this would not change the high proportion of tabular slate tools in the site assemblage.

Bevelled-Edge Tabular Slate Tools

There are 304 specimens in this subcategory, which includes rectangular forms with flat dorsal and ventral surfaces and one or more straight, unifacially bevelled working edges (Fig. 4). Sometimes two working edges occur as a set of reverse bevels, that is, opposite edges have bevels on opposite surfaces, so that when one edge becomes blunt, the tool can be flipped over to make a sharp edge available. A single tool may even have two sets of reverse bevels (Fig. 4a). Stemmed, bevelled-edge tabular slate tools are common and come in a range of sizes and a variety of shapes (Fig. 4). All stemmed examples have a single distal unifacial bevel; lateral margins have a bifacial bevel blunted by a third facet.

Hafting, where it occurs, takes many forms. The stemmed specimens were likely inserted into a handle, and the sides of the stems are blunted to accommodate the haft without damage. A few specimens have a lateral handle (Bell et al., 2005: Fig. 7) that could have been hand-held or possibly...
wrapped with sinew to improve the grip. Some stemmed examples have two gouged holes at the proximal margin of the blade, to which a handle would have been lashed or riveted (Fig. 7).

Rounded-Tip Tabular Slate Tools

There are 98 specimens in this subcategory, which includes linear slate tools that are at least three times as long as they are wide. The dorsal and ventral surfaces are flat, and there is at least one rounded end that is ground thin like a dinner knife. Although many are broken roughly in half, there are complete specimens with two rounded ends (Fig. 5a–b) and, less frequently, with one rounded and one straight, unifacially bevelled end (Fig. 5d–e). In a few cases the end of the tool is pointed rather than rounded (Fig. 5c). Some specimens are perforated for suspension (Fig. 5f–j). In all cases the lateral margins are rounded or otherwise blunted. In many examples, a narrow ridge runs the full length of the lateral margins, a remnant of the groove-and-snap technique by which they were made. There are a few ivory examples (Fig. 5g–h) which are not included in the tabular slate subcategory but which probably had a similar function.

Whetstones

There are at least six complete and 38 whetstone fragments, all made of a variety of fine sandstones. There are two kinds of whetstones (Fig. 8), passive (the edge to be sharpened is rubbed against a stationary stone) and active (the stone is rubbed against a stationary edge to be sharpened). The large passive whetstone in Figure 8 has an extensive polished dorsal surface and two narrower sharpening facets on its side; there is a sharpening groove on the dorsal surface. We conclude that the tabular slate tools were sharpened with these whetstones, which might also have been used to grind, polish, and sharpen other tools, such as nephrite burin-like tools (Harp, 1964:Plate 23:7–10) and adzes (Harp, 1964:Plate 16:7). These whetstones differ from more common abraders (n = 529), which are made of much coarser-grained sandstone and have four to six grinding facets (Harp, 1964:Plate 20:2). These abraders fit the inside angles of the large, rectangular soapstone pots found at the site in fragmentary form, and we therefore assume that they were used to fabricate or clean those pots.

Interpretation

We propose that the bevelled-edge tabular slate tools are the functional equivalent of the straight-edged and convex-edged scrapers used to stretch, soften, and degrease sealskin. We base this on the unifacial edge bevel, which is appropriate for scraping rather than cutting, and on the fact that slate would be too soft for use with hard materials such as wood, bone, or stone. Harp (1964:63) called these tools bevelled knives and Gracie (2004) identified them as scrapers on the basis of their edge attributes and comparisons with the ethnographic literature. These tools would have required constant re-sharpening, like the slate *uluit* in replication experiments, which became blunt very easily when used to fillet salmon (Frink et al., 2003). Therefore it must have been useful to have one or two sets of reverse bevels on the bevelled-edge tabular slate tool so that the skin worker could blunt two or four edges before stopping to re-sharpen.

The function of the rounded-tip tabular slate tools is more ambiguous. Harp (1964:64–65) called them flat-bladed chisels, and Cox (1978:107) called them spatulate tools. We can suggest two possibilities, associated not with skin scraping but with the subsequent steps in the transformation of sealskin into clothing and boots. The rounded tip is the right shape to crimp pleats to form the rounded heel and toe of a sealskin boot. Similar tools are called boot-creasers or boot-pressers in the ethnographic literature (Birket-Smith, 1945:116; Oakes and Riewe, 1978:107).
At 3000 cal BP, spruce pollen decreases, indicating the establishment of conifer woodland on the peninsula. Soon after, Abies (fir) pollen steadily increases, indicating establishment of fir woodland. Additional taxa reach their maxima and minima at 2200–1400 cal BP, with taxa reaching their maxima earlier than those reaching their minima, signifying a gradual transition to fir woodland. At 2200 cal BP, birch (Betula) tree pollen increases, followed by a prominent charcoal peak at 2200 cal BP, signifying a forest fire. Birch trees are not common today in the harsh coastal environment of the Point Riche Peninsula, and their increase is likely due to local forest fire or increased human activity in the drainage basin, or both. Since there is no corresponding peak at Stove Pond, we do not think this is a natural phenomenon and it is more likely the result of increased human activity. The charcoal peak occurs during a particularly cold and wet period, indicated by summer water temperatures in Bass Pond (Rosenberg et al., 2005). The pollen record of Bass Pond demonstrates rough correspondence between palaeoclimate and vegetation changes and local culture history (Rosenberg et al., 2005). Subsequent higher-resolution pollen analysis and radiocarbon dating confirm the pollen records and provide more detail on the nature and timing of disturbance events (Fig. 9), described in Bell et al. (2005). Analysis of sediment from a second lake, Stove Pond, 11 km inland of Port au Choix and far from any known archaeological site (Fig. 1), generated baseline observations for comparison with those of Bass Pond (Bell et al., 2005).

Before 3000 cal BP, the curves for the major taxa in Bass Pond sediments show few fluctuations, suggesting no marked changes in the vegetation of the catchment (Fig. 9). At 3000 cal BP, spruce (Picea) pollen reaches a maximum, while fir (Abies) pollen steadily increases, indicating established conifer woodland on the peninsula. Soon after 3000 cal BP, spruce pollen gradually declines until an abrupt decrease at 2200 cal BP. Fir pollen percentages do not mirror this decline, but they do register a marked decrease at 2200 cal BP. The spruce component of the woodland selectively declined after 3000 cal BP is not apparent, but since this same decline is not seen in the Stove Pond record, we conclude that it is unrelated to climate.

Another anomaly that appears in this part of the pollen record and is particularly pronounced between 2200 and 1600 cal BP is the increase in birch (Betula) tree pollen. Birch trees are not common today in the harsh coastal environment of the Point Riche Peninsula and were probably less common during the cooler period between 3000 and 2000 cal BP (Rosenberg et al., 2005). The pollen identified as birch is more likely shrub birch; the misidentification relates to the overlap in grain diameter, which is the only basis for their differentiation in Newfoundland pollen records (Dyer, 1986).

There is a prominent charcoal peak at 2200 cal BP. There is no corresponding peak at Stove Pond, and we interpret this to represent a local forest fire that could in part account for the marked decline in spruce and fir and a corresponding increase in shrubs and herbs. Although the fire could have been natural, we think it more likely that it was started by humans, since the modern-day occurrence of fire on these northern coastal barrens is extremely rare (Meades and Moores, 1989) and the charcoal peak occurred during a particularly cold and wet period, indicated by summer water temperatures in Bass Pond (Rosenberg et al., 2005) and the onset of regional paludification (Davis, 1984).

There is a rapid accumulation of sediment at 2200–1100 cal BP (40–10 cm depth below core surface) and particularly at 2200–2000 cal BP (40–30 cm). This may reflect soil disturbance through loss of protective vegetation cover following the forest fire at 2200 cal BP or increased human activity in the drainage basin, or both. There were prominent bands of tiny twig fragments, mostly balsam fir, at 29–22 cm and 40–60 cm below core surface. The former interval is approximately dated to 2000–1700 cal BP. Although the size of the twigs is too small to see any tool marks, or to require tool use, we do not think this is a natural phenomenon and it is more likely anthropogenic.

Although pollen from most shrub and herb taxa showed short-lived peaks in the 2200–2000 cal BP interval, willow (Salix) pollen decreased in abundance, and moss (Sphagnum) spores were reduced to very low levels at 2200–1800 cal BP. Because willow and moss occur only close to the pond, we conclude that there was disturbance of the vegetation at the pond shore.

Pollen from the aquatic herb Myriophyllum first appeared at 2200 cal BP and briefly peaked at 2000 cal BP. It subsequently decreased in abundance and disappeared by 1800 cal BP. Myriophyllum occurs today only in eutrophic (nutrient-rich) lakes within the region (Bouchard et al., 1978), indicating similar nutrient enrichment at Bass Pond.
There is a coincident and more sustained increase in remains of the aquatic alga *Pediastrum* at 2000 – 1400 cal BP, which also indicates nutrient enrichment of Bass Pond waters.

Fossil chironomid assemblages from the Bass Pond core (not shown on Fig. 9) indicate a dramatic rise in salinity from 0.1 to 1.9 g/l after 2200 cal BP, peaking at 2000 cal BP and then declining to 0.8 g/l by 1800 cal BP. Elevated salinity levels continued until 1400 cal BP, and freshwater conditions did not return to Bass Pond until 1100 cal BP (Rosenberg et al., 2005).

Interpretation

We propose that the disturbance across a number of pollen taxa at 2200 – 1400 cal BP and the increase in salinity at 2000 – 1400 cal BP are related to the Palaeoeskimo occupation of the Bass Pond region, in particular the intensive Dorset occupation of Phillip’s Garden during 1990 – 1180 cal BP. However, some of the early disturbance from 3000 to 2200 cal BP may be attributable to the smaller-scale Groswater Palaeoeskimo occupation of the Phillip’s Garden East site that lies between Phillips Garden and Bass Pond (Fig. 1) and dates to 2950 – 2130 cal BP (Renouf, 2005). Phillip’s Garden East is a small site (1500 m²) that is interpreted as a short-term, seasonal, harp seal–hunting occupation involving a small residential group (Kennett, 1990; Renouf, 1994, 2005; LeBlanc, 1996, 2000). It has two spatially and temporally distinct occupation areas (Renouf, 2005), which suggests that occupation was episodic. This contrasts with the continuous occupation of Phillip’s Garden by many families who likely stayed at the site for several months each year.

We interpret three kinds of human disturbance. First, we suggest that the Groswater occupation of Phillip’s Garden East caused the gradual reduction in spruce trees in the local coniferous woodland after 3000 cal BP and the burning of that woodland seen in the charcoal peak at 2200 cal BP. Groswater people used fire-heated rocks for their main source of heat (Renouf, 1994), and therefore hearths or hot rocks may have caused accidental burning of local forest cover.

Second, lakeside disturbance is reflected in a marked reduction in the occurrence of willow and moss in Bass Pond sediments at 2200 – 1800 cal BP. We suggest that this reduction is linked to trampling, first by Groswater and later by Dorset people, as they engaged in pond-side activities. Moss is particularly vulnerable to trampling and in this case did not return to pre-disturbance levels until 1400 cal BP, toward the end of the most intensive occupational phase of Phillip’s Garden (1550 – 1350 cal BP).

Third, we propose that the disturbance across Bass Pond pollen taxa at 2200 – 1400 cal BP is the result of two separate and sequential processes, those at 2200 – 2000 cal BP relating to the forest fire noted above, and those at 2000 – 1400 cal BP relating to Dorset sealskin-processing activities. The initial peak of nutrient levels at 2200 cal BP, seen in the appearance of *Myriophyllum* at this time with a later spike at 2000 cal BP, is likely the result of the forest fire and soil erosion resulting from loss of vegetation;
fire can release nutrients into catchment waters which can then be leached or eroded into ponds (cf. Cwynar, 1978; Burden et al., 1986). Increased soil erosion is also reflected in the increased sedimentation in the lake basin at 2200–2000 cal BP. Soon after 2000 cal BP, shrub and herb taxa returned to pre-fire levels. However, tree taxa did not return to normal levels until 1500 cal BP, well after the 2200 cal BP forest fire. Similarly, increased nutrient levels (Pediastrum) persisted until 1400 cal BP. Willow and moss remained low until 1800 cal BP, sedimentation rates remained high until 1100 cal BP, and salinity levels, elevated at 2000–1400 cal BP, did not return to normal until 1100 cal BP.

We propose that these disturbances are related to Dorset sealskin-processing activities. Sealskins were immersed in water for depilation, as in modern Northern Peninsula practices, thus encouraging bacterial growth (identified on the basis of an increase in Pediastrum) and increasing pond-side trampling (identified on the basis of a decrease in Sphagnum and Salix). The increase in salinity is intriguing. Whereas Rosenberg et al. (2005) speculate that this might be the result of a marine incursion or the reworking of marine sediments, an alternative hypothesis is that the increase in salinity is associated with tanning activity that took place near the pond, and that the saline tanning solutions were tipped into the pond after use.

To summarize the comparative chronology of disturbance events and human occupation, the 2200–1400 cal BP vegetation disturbance in Bass Pond corresponds to the end of the 2950–2130 cal BP Groswater occupation of Phillip’s Garden East and to the early (1990–1550 cal BP) and middle (1550–1350 cal BP) occupational phases of Phillip’s Garden. Bass Pond salinity and sediment accumulation returned to normal just after Phillip’s Garden abandonment at 1180 cal BP. While it is reasonable to expect a linear relationship between the occupational intensity at Phillip’s Garden and evidence of sealskin processing at Bass Pond, at present this is not evident. Higher resolution archaeological and palaeo-limnological data might be required to assess this expectation.

DISCUSSION

Current research on Phillip’s Garden has focused on harp seal hunting and its associated technology and seasonality and on the large dwellings and community that this activity supported (Harp, 1976; Murray, 1992; Renouf, 1993, 1999, 2002, 2006; Renouf and Murray, 1999; Hodggets et al., 2003). Harp seals provided not only meat for food and blubber for fuel, but also the essential raw material for making waterproof clothing and other articles without which hunting would not have been possible. A substantial number of seals would have been required to provide one set of waterproof clothing as well as boots, bags, bedding and covers for kayaks and dwellings. Issenman (1997:73) noted that a hunter in Nunavut needed eight ringed seal skins for his spring and summer parka and trousers, not including boots and mitts. Pedersen (2005:70) reported that it took her 12 ringed seal skins to sew one set of clothes for an adult female, including boots and trousers.

Although harp seals are larger than ringed seals, and fewer harp seal skins would be required for a set of clothing, nevertheless the Phillip’s Garden Dorset would have required a substantial number of seal skins on a continuing basis. This reinforces our argument that the Phillip’s Garden harp seal hunt was for the purpose of obtaining skins as well as blubber and meat.

The focus on sealskin processing at Phillip’s Garden is reflected in the proportion of tabular slate tools (4.4%). We compared the proportion of ground slate tools from 11 Dorset sites in Newfoundland (Table 2). While it would be desirable to re-examine these collections to establish direct comparability with our Phillip’s Garden database, at this preliminary stage we used specimen counts available from theses, reports, and databases; in some cases, we were able to obtain updated information from site excavators. We assume that the counts include complete and incomplete specimens and fragments. Where slate endblades or points were specified (Phillip’s Garden, Chest Head, Stock Cove, Beaches, the Bank site; Fig. 1), they were excluded from the counts, but where they are not specified, there is no way of knowing if they are included in the total given for slate artifacts (Table 2). Thus, the slate tool counts from other sites might be inflated in comparison with the total of Phillip’s Garden tabular slate tools.

Among this sample of Dorset sites, only three sites have a proportion of slate comparable to that at Phillip’s Garden: Cape Ray (4.3%), Chest Head (3.3%) and Point Riche (5.6%) (Fig. 1). Although none of these sites approach the size of Phillip’s Garden, they are nevertheless three of the largest Dorset sites in Newfoundland. Like Phillip’s Garden, they are situated on prominent headlands and are interpreted as major harp seal hunting sites (Linnamae, 1975; Fogt, 1998; Eastaugh, 2002; Penney and Renouf, 2006). In contrast, the other sites in the sample have fewer than 1.1% slate tools. All are within protected inner bays, sheltered coves or deep inlets, which are poor harp seal hunting locations. An exception is Broom Point (Fig. 1), which is near important lithic outcrops and is interpreted as a small lithic workshop (Krol, 1986:211). If tabular ground slate tools are specialized sealskin working tools, as proposed, it makes sense that they appear in the greatest numbers at major harp seal hunting sites.

Tabular ground slate tools are largely a Newfoundland phenomenon, although a few specimens have been identified in Labrador sites (Cox, 1978; Jordan, 1986). The published literature indicates some possible functional analogues from eastern Arctic sites. Examples are the straight-tipped, side-notched ground slate knives at the Tanfield site in Lake Harbour (now Kimmirut), southern Baffin Island, which Maxwell (1985:142) suggested were skin scrapers; the rounded-tipped, side-notched slate knives from Nanook, Lake Harbour (Maxwell, 1985); the straight-
tipped and rounded-tipped, side-notched slate tools from Nunguvuk in Navy Board Inlet (Mary-Rousselière, 2002); and the curved-edge slate tool fragment from Saatut in Navy Board Inlet (Mary-Rousselière, 2002). However, it seems that nowhere is there a parallel to the tabular slate tools from Phillip’s Garden and other Newfoundland seal hunting sites. This phenomenon is likely connected to the large and predictable harp seal herds that are available in Newfoundland. In Labrador accessibility is less predictable since the migrating harp seal herds are at the ice edge, which can sometimes be very far offshore. Elsewhere in the Arctic, people relied more on the solitary ringed seal, whose location can be predicted only generally. Like the rich salmon runs of coastal Alaska and British Columbia, the predictable harp seal concentrations in Newfoundland presented opportunities for optimization of yield through coordinated and concentrated efforts of hunters and processors. The two- and four-sided bevelled-edged slate scrapers from Phillip’s Garden would have maximized efficiency in a context of such intensive processing effort.

There are fewer comparisons to be made with our data from Bass Pond. Ekdahl et al. (2004) showed increased eutrophication of Crawford Lake, southern Ontario, near an Iroquoian village dating to the 13th – 15th century AD. They argued that increased algal production and changes in diatom assemblages in lake sediments at the time of initial Iroquoian occupation were the result of increased nutrient input due to horticultural activity; these changes intensified as subsequent Iroquoian occupation expanded. They concluded that prehistoric populations had a significant and lasting influence on lake ecology (Ekdahl et al., 2004:748). A closer comparison is the study of changes in pond ecology adjacent to PaJa-13, a 13th – 15th century AD Thule site in Hazard Inlet, Somerset Island (Douglas et al., 2004). Contemporaneous with site occupation was an increase in pond nutrients, as indicated by the relative frequency of three key diatom species. Pond sediments also showed an anomalous increase in stable nitrogen content. Both disruptions were linked to decay of whale carcasses associated with Thule whale hunting. Douglas et al. (2004:1616) commented that this is the earliest North American example of human populations affecting freshwater ecology. Our Bass Pond data push evidence of anthropogenic disturbance back to 2200 – 1400 cal BP.

The archaeological and palaeo-limnological evidence for sealskin processing directs our attention to what Dobres and Hoffman (1994:247) called the micro-scale processes of day-to-day life. Circumpolar ethnography details how sealskin processing was commonly the domain of women, although in some Siberian groups both men and women processed skins (Bogoras, 1909; Oakes and Riewe, 1998), and on the Northern Peninsula, the men turned sealskins into leather (Great Northern Peninsula Craft Producers, 2002). But in Inuit contexts, skin working knowledge and skills were taught to young girls (Freeman, 1978; Harcharek, 2005). Sealskin-processing tools were part of a woman’s personal property, and her uluit were part of her identity (Mason, 1892; Rankin and Labrèche, 1991). We do not know if sealskin processing was a female activity in Dorset society, but if it was, then the study of Dorset sealskin processing is the study of the day-to-day activities of women and young girls and, less tangibly, of the expression of their gender and identity.

The archaeological and palaeo-limnological evidence also directs our attention outward from Phillip’s Garden to the surrounding area that comprised the day-to-day cultural landscape of its inhabitants. Evidence of human activity at Bass Pond encourages us to see Phillip’s Garden in the context of other locations and the pathways that connected them. In their research on concepts of land tenure among historic Amerindian groups, Zedeño et al. (1997) identify landmarks: places where human activities occurred and which therefore have cultural significance. They define the cultural landscape as the network of relations amongst landmarks. Following this approach, Phillip’s Garden and Bass Pond were two of the no doubt many landmarks that comprised the cultural landscape within which generations of Dorset families carried out their daily activities on the Point Riche Peninsula.

TABLE 2. Relative frequency of ground slate tools from 11 Dorset sites in Newfoundland. The counts exclude debitage, retouched flakes, and utilized flakes.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Borden #</th>
<th>Location</th>
<th>Tools</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillip’s Garden</td>
<td>EeBi-1</td>
<td>exposed headland</td>
<td>1357 31067 4.37</td>
<td>PAC Archaeology Project database</td>
</tr>
<tr>
<td>Point Riche</td>
<td>EeBi-20</td>
<td>exposed headland</td>
<td>112 1995 5.61</td>
<td>Eastaugh, 2002</td>
</tr>
<tr>
<td>Cape Ray</td>
<td>CjBt-1</td>
<td>exposed headland</td>
<td>223 5142 4.34</td>
<td>Limnamae, 1975; Fogt, 1998</td>
</tr>
<tr>
<td>Chest Head</td>
<td>Efx-2</td>
<td>exposed headland</td>
<td>36 1101 3.27</td>
<td>PAC Archaeology Project database</td>
</tr>
<tr>
<td>Broom Point</td>
<td>DDB-1</td>
<td>exposed point of land</td>
<td>0 368 0</td>
<td>Krol, 1987</td>
</tr>
<tr>
<td>Cow Cove 3</td>
<td>EeBa-16</td>
<td>sheltered cove near headland</td>
<td>2 408 0.49</td>
<td>Erwin, 2003, pers. comm. 2007</td>
</tr>
<tr>
<td>Dildo Island, House 2</td>
<td>CjAj-2</td>
<td>inner bay island</td>
<td>50 4566 1.1</td>
<td>LeBlanc, 2003, pers. comm. 2007</td>
</tr>
<tr>
<td>Stock Cove</td>
<td>CkAl-3</td>
<td>inner bay</td>
<td>3 1091 0.27</td>
<td>Robbins, 1985</td>
</tr>
<tr>
<td>Beaches</td>
<td>DeAk-1</td>
<td>inner bay island</td>
<td>1 322 0.31</td>
<td>Carignan, 1975</td>
</tr>
<tr>
<td>Bank Site</td>
<td>DdAk-5</td>
<td>deep inlet</td>
<td>0 1081 0</td>
<td>Schwarz, 1992</td>
</tr>
<tr>
<td>Pittman</td>
<td>DkBe-1</td>
<td>inner bay headland</td>
<td>6 526 1.14</td>
<td>Limnamae, 1975</td>
</tr>
</tbody>
</table>
CONCLUSIONS

In summary, we propose that harp seals were hunted from Phillip’s Garden for skins, as well as for meat and fat. Processing the skins was the first step in the important activity of making clothes, boots, and items such as bags, bedding, tent covers, and kayak covers. We outline the steps and tools involved in processing sealskin throughout the northern circumpolar world and identify specialized skin-processing tools in the Phillip’s Garden tool assemblage. Sealskin processing is also inferred from pollen and chironomid data from nearby Bass Pond, where disturbance across pollen taxa is evident at 2200–1400 cal BP and anomalous salinity values are evident at 2000–1400 cal BP. While it appears that Groswater activities were responsible for some of the disturbances in the pond, particularly those relating to a forest fire and consequent changes in vegetation, we argue that Dorset sealskin-processing activities carried out from the large Phillip’s Garden site were responsible for much of the disturbance. This study shifts our perception of Dorset activities at Phillip’s Garden away from a narrow focus on seal hunting and the site itself and broadens our view to include more of the multiplicity of day-to-day human activities that took place within a larger cultural landscape that included Phillip’s Garden and Bass Pond.

ACKNOWLEDGEMENTS

Multi-year funding for the Northern Peninsula Archaeology and Landscape History Project, of which the Port au Choix Archaeology Project is a part, has been provided by SSHRC, NSERC, Parks Canada, the Canada Research Chairs Program, Memorial University of Newfoundland and the Provincial Archaeology Office. Joyce Macpherson and Peter Scott, Memorial University of Newfoundland, identified fossil pollen and wood samples, respectively. We would like to thank Patty Wells and Dominique Lavers, who re-catalogued the Phillip’s Garden artifact collection. David Mercer and Charlie Conway of the Memorial University Cartography Lab drafted the diagrams, and Chris Hammond of Memorial University Photography took most of the artifact photographs. We acknowledge discussions with Joyce Macpherson, Marianne Douglas, and Pat Sutherland, and we thank Sylvie LeBlanc and John Erwin for allowing us to use their unpublished data. Thanks also to reviewers of this paper for their helpful comments.

REFERENCES

DYER, A.K. 1986. A palynological investigation of the Late Quaternary vegetational history of Baie Verte Peninsula, northcentral Newfoundland. MSc thesis, Department of Geography, Memorial University of Newfoundland, St. John’s, Newfoundland.

EASTAUGH, E.J.E. 2002. Intra-site variability at the Dorset site of Point Riche, Port au Choix, MA thesis, Department of Anthropology, Memorial University of Newfoundland, St. John’s, Newfoundland.

MURRAY, M.S. 1992. Beyond the laundry list: The analysis of faunal remains from a Dorset dwelling at Phillip’s Garden (EeBi-1), Port au Choix, Newfoundland. MA thesis, Department of Anthropology, Memorial University of Newfoundland, St. John’s, Newfoundland.

ROBBINS, D.T. 1985. Stock Cove, Trinity Bay: The Dorset Eskimo occupation of Newfoundland from a southeastern perspective. MA thesis, Department of Anthropology, Memorial University of Newfoundland, St. John’s, Newfoundland.

